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Abstract

Given a number of patrollers that are required to detect an intruder in a channel, the channel

patrol problem consists of determining the periodic trajectories that the patrollers must trace

out so as to maximized the probability of detection of the intruder. We formulate this problem

as an optimal control problem. We assume that the patrollers’ sensors are imperfect and that

their motions are subject to turn-rate constraints, and that the intruder travels straight down

a channel with constant speed.

Using discretization of time and space, we approximate the optimal control problem with

a large-scale nonlinear programming problem which we solve to obtain an approximately sta-

tionary solution and a corresponding optimized trajectory for each patroller. In numerical tests

for one, two, and three underwater patrollers, an underwater intruder, different trajectory con-

straints, and several intruder speeds, we obtain new insight — not easily obtained using simply

geometric calculations — into efficient patrol trajectory design for multiple patrollers in a nar-

row channel where interaction between the patrollers is unavoidable due to their limited turn

rate.
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1 Introduction

This paper deals with the optimal detection of an underwater intruder in a channel using one or

more unmanned underwater vehicles (UUVs). In particular, it establishes optimal periodic patrol

trajectories for the UUVs, which we refer to as patrollers, that maximize the probability of detection

of an underwater intruder traveling straight down a channel at constant speed. While we focus on

an underwater intruder and patrollers, our general approach may also be applicable in the case of

other types of vehicles.

This problem is a multi-patroller extension of the classical “channel patrol problem” (also

called the barrier patrol problem); see, e.g., Section 1.3 of [13] and Chapter 9 of [12]. The channel

patrol problem for a single patroller was formulated by Koopman [7] during World War II and

arises in naval operations where the channel may represent a relatively narrow body of water such

as a strait or port entrance through which enemy vessels and submarines as well as smugglers and

terrorists may attempt to pass. The need to consider multiple patrollers is apparent, especially in

view of the development of small UUVs that may be used to guard channels. The channel patrol

problem may also arise in anti-submarine warfare in an operating area around a carrier or naval

expeditionary strike group [11] and then typically with multiple patrollers. With the proliferation of

small diesel submarines and the advent of UUVs and self-propelled semi-submersibles the channel

patrol problem has acquired new importance, since these vessels are difficult to detect.1

The early studies by Koopman [7] as well as by Washburn [14] focus on the determination

of the probability of intruder detection for a single patrol trajectory consisting of piecewise linear

segments; see also Chapter 9 of [12]. This approach results in simple formulae for the probability

of detection and provides insight into the effectiveness of “back-and-forth” versus “bow-tie” tra-

jectories for various patroller and intruder speeds. In reality, a vessel cannot carry out a perfect

back-and-forth patrol trajectory as it is unable to turn around instantaneously at the end of each

channel crossing. These early studies ignore the limited turn-radius of the patroller or use coarse

approximations. Moreover, they focus on a single patroller with the assumption that the case of

multiple patrollers can be solved by dividing the channel into subchannels, with one patroller as-

signed to each subchannel. This policy may become problematic when there are many patrollers in

1Quoting from Daily Mail Online, November 11th, 2007, “American military chiefs have been left dumbstruck by

an undetected Chinese submarine popping up at the heart of a recent Pacific exercise and close to the vast U.S.S.

Kitty Hawk - a 1,000 ft super carrier with 4,500 personnel on board. By the time it surfaced the 160 ft Song Class

diesel-electric attack submarine is understood to have sailed within viable range for launching torpedoes or missiles

at the carrier,” by Matthew Hickley.
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a narrow channel. In that case, the limited turn radius of a patroller may force it to deviate greatly

from the assigned, say, back-and-forth trajectory. We refer the reader to [1] for a broad review of

other problems in search theory.

In this study, we consider one or more patrollers, account for turn-radius limits and imperfect

sensors, and model the motion of the patrollers using ordinary differential equations. This formu-

lation leads to an optimal control problem with solution trajectories that are executable by UUVs.

Optimal control formulations of general search problems are found in [3] with later generalizations

in [9]; see also references therein. However, these studies deal with the general situation where the

intruder moves according to some diffusion process. We take advantage of the special structure of

the channel patrol problem and derive significantly simpler expressions, which allow us to carry

out a comprehensive numerical investigation of one, two, and three patrollers.

In Section 2 we derive a formula for the detection probability, in Section 3 we present the opti-

mal control formulation of the channel patrol problem, and in Section 4 we discuss a discretization

scheme for this optimal control problem. Numerical results are found in Section 5, which is followed

by our concluding remarks in Section 6.

2 Detection Probability

We consider a scenario of patrolling a channel similar to the one in [14]: patrollers search a channel

of width L looking for a single intruder which is moving straight down the channel with constant

speed vI (see Figure 1). The intruder is unaware of the patrollers, makes no attempt to evade them,

and simply progresses straight down the channel.

We assume that the probability of detection, of the intruder by a patroller, depends on the

positions of the patroller and the intruder, the quality of the patroller’s sensor, and on the time

allowed for observation. We also could easily let the probability of detection depend on the speeds of

the intruder and patrollers, but ignore that possibility here to avoid complicated detection models.

(We do explore one effect of variable intruder speed in Section 5.)

Suppose that there are q patrollers looking independently for the intruder and that x̂k(t) ,

(x1
k(t), x

2
k(t)) ∈ R

2 is the position of the k-th patroller at time t, k = 1, 2, ..., q, see Figure 1 for the

case with q = 2. We use superscripts to denote components of a vector. Of course, UUVs can also

vary their depth, but we ignore this possibility for simplicity of exposition. The formulation below

can trivially be extended to three dimensions.

We derive the expression for the probability of detection in two steps. First, we derive the
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Figure 1: Two patrollers (bottom) try to detect an intruder (top) in a channel

detection probability for a stationary intruder. Second, we extend that expression to the situation

at hand with a moving intruder in a channel. Hence, temporarily assume that the intruder is

stationary and located at y ∈ R
2. Again, an extension of the following formulation to three

dimensions is trivial. Let rk(x̂k(t), y, t) ≥ 0, k = 1, 2, ..., q, denote the detection rate at time t

for the k-th patroller at x̂k(t) when the intruder is located at y. The detection rates reflect the

qualities of the patrollers’ sensors as described in more details below and are defined so that the

probability that the k-th patroller detects the intruder during a small time interval [t, t + ∆t)

is rk(x̂k(t), y, t)∆t. For theoretical and computational reasons, rk(·, ·, ·), k = 1, 2, ..., q, must be

smooth, but can otherwise take any form to reflect a variety of sensors.

We focus on patrollers that are UUVs and intruders that are diesel-electric submarines, and

assume that the patrollers’ sensors are sonars. Hence, we adopt the Poisson Scan Model (see, e.g.,

[13] p. 3-1) and, for the k-th patroller, we set

rk(x̂k(t), y, t) = λΦ[{Fk − ρ(x̂k(t), y)}/σ], (1)

where Φ(·) is the standard normal cumulative distribution function, λ is the scan opportunity rate,

Fk is the “figure of merit” (a sonar characteristic), σ reflects the variability in the “signal excess,”

and ρ(x̂k(t), y) is the propagation loss, which depends on the distance between the patroller and

the intruder, see, e.g, Figure 4.5 on page 93 in [12]. All these quantities may be time dependent.

The typical shape of rk(x̂k(t), ·, t) is shown in Figure 2, where x̂(t) = (0, 0) and ρ(x̂k(t), y) =

a‖x̂k(t) − y‖2 + b, with λ = 1, Fk = 70, σ = 5, a = 0.5, and b = 60. We now define the probability

that the k-th patroller does not detect the intruder during some time interval [0, T ] in terms of the
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Figure 2: Detection rate function based on Poisson Scan Model (1).

detection rate.

Given a trajectory {x̂k(t), 0 ≤ t ≤ T} and an intruder at y, we denote the probability that the

k-th patroller does not detect the intruder during [0, t], t ∈ [0, T ], by pk(y, t). Assuming that events

of detection in non-overlapping time intervals are all independent, we find that this probability can

be computed recursively by solving the difference equation

pk(y, t + ∆t) = pk(y, t) (1 − rk(x̂k(t), y, t)∆t) , pk(y, 0) = 1, (2)

or, as ∆t tends to zero, by solving the parameterized differential equation

dpk(y, t)

dt
= −pk(y, t)rk(x̂k(t), y, t), pk(y, 0) = 1, (3)

with solution

pk(y, t) = exp(−ηk(y, t)), (4)

where

ηk(y, t) =

∫ t

0
rk(x̂k(s), y, s)ds. (5)

The above derivation follows standard arguments for Poisson processes and ηk(y, t) is the mean

value of the random number of detections at y, up to time t, by the k-th patroller, when that

number is given by a Poisson law.

Now, let φ : R
2 → R be the probability density function of the location of the (stationary)

intruder at time 0, i.e., for any B ⊂ R
2,
∫

B φ(y)dy is the probability that the intruder is located

in the area B at time 0. This information may be provided by exogenous intelligence sources and
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reflects the patrollers knowledge about the intruder prior to the start of the patrols. Then, the

probability that the k-th patroller fails to detect a stationary intruder during the time period [0, T ]

is given by
∫

y∈R2

pk(y, T )φ(y)dy (6)

=

∫

y∈R2

exp

(

−
∫ T

0
rk(x̂k(t), y, t)dt

)

φ(y)dy. (7)

The functions pk(·, t), k = 1, 2, ..., q, reflect the patrollers’ knowledge about the intruder’s

location at time t and can therefore be considered to be “information states” or “belief states” that

augment the “physical state” x̂k(t), k = 1, 2, ..., q.

The extension from a stationary intruder, as assumed above, to an intruder that moves straight

down a channel at constant speed, see Figure 1, is accomplished by a linear transformation as

described next.

As in [14], we fix the position of the intruder on a tape moving down the channel at the speed

of the intruder, vI . Hence, the intruder is stationary relative to the tape and the formulae derived

above are applicable. We only need to measure the patroller’s location relative to the tape. In

this framework, the probability of detection relates to the ratio of the rate at which the patroller

examines new area on the tape to the rate at which new tape area appears.

In order to utilize this approach, let ẑk(t) , (z1
k(t), z2

k(t)) be the position vector of the k-th

patroller at time t relative to the tape. Then we have that for all k = 1, 2, ..., q,

z1
k(t) = x1

k(t)

z2
k(t) = x2

k(t) + vIt.
(8)

We refer to x̂k(t) and ẑk(t) as the absolute and relative positions of the k-th patroller at time

t, respectively. We will use y for both the absolute and relative positions of the intruder as the

meaning is clear from the context.

Since the channel has width L, it suffices to consider relative intruder position y ∈ A(T ) ,

[0, L]×[0, vIT ] for patrols of duration T time units. Hence, it follows from (7) that given a trajectory

{ẑk(t), 0 ≤ t ≤ T}, the probability that the k-th patroller does not detect the intruder during time

period [0, T ] is

Pk ,

∫

y∈A(T )
exp

(

−
∫ T

0
rk(ẑk(t), y, t)dt

)

φ(y)dy, (9)

where the probability density function of the relative position of the intruder takes the specific form

φ(y) = φ1(y1)/(vIT ), with φ1(·) being the probability density function of the intruder’s y1-position

6



(i.e., the intruder’s horizontal position in Figure 1). For example, if the patrollers have no prior

knowledge of the y1-position of the intruder, then one can assume a uniform distribution across the

channel, i.e., φ1(y1) = 1/L for all y1 ∈ [0, L]. Note that we abuse the notation rk(·, ·, ·) slightly, by

using it to represent the detection rate function both in the absolute and in the relative positions.

We assume that the patrollers make independent detection attempts and hence it follows from

(4) and (5) that the conditional probability that no patroller detects the intruder given a specific

relative intruder position y is simply the product

q
∏

k=1

exp

(

−
∫ T

0
rk(ẑk(t), y, t)dt

)

= exp

(

−
q
∑

k=1

∫ T

0
rk(ẑk(t), y, t)dt

)

= exp

(

−
∫ T

0

q
∑

k=1

rk(ẑk(t), y, t)dt

)

.

(10)

Consequently, the probability that no patroller detects the intruder during [0, T ] takes the form

P ,

∫

y∈A(T )
exp

(

−
∫ T

0

q
∑

k=1

rk(ẑk(t), y, t)dt

)

φ(y)dy. (11)

We use this expression in an optimal control problem for determining patrol trajectories as

discussed next.

3 Optimal Control Problem

Our objective is to find optimal closed trajectories for multiple patrollers that maximize the prob-

ability of detection of the intruder. In contrast to [14], we consider multiple patrollers whose turn

radius is constrained by their dynamics, in differential equation form, and available control action.

Thus we assume that the positions of the patrollers are states of a differential equation. Specifically,

we assume that the kinematic equations of all the patrollers are the same and are of the form

dxk(t)

dt
= f(xk(t), uk(t)), xk(0) = ξk, (12)

where the state xk(t) ∈ R
nx , the control uk(t) ∈ R

nu , f : R
nx × R

nu → R
nx is locally Lipschitz

continuous, and ξk is the initial condition of patroller k. We assume that the first two components

of the state, (x1
k(t), x

2
k(t)), represent the absolute location of the k-th patroller. Hence, xk(t) =

(x̂k(t)
′, x3

k(t), x
4
k(t), ..., x

nx

k (t))′, where prime denotes the transpose of a vector. The assumption that

all patrollers are governed by the same kinematic equation is easily relaxed, but requires further

notation and is therefore avoided here.

7



Next, referring to (8), let e2 , (0, 1, 0, . . . , 0) ∈ R
nx , and let zk(t) , xk(t) + vIte2. Hence,

zk(t) = (ẑk(t)′, x3
k(t), x

4
k(t), ..., x

nx

k (t))′. We refer to xk(t) and zk(t) as absolute and relative states

for the k-th patroller, respectively. Then we find that the k-th patroller’s dynamics in the relative

state become
dzk(t)

dt
= f̃(zk(t), uk(t)), zk(0) = ξk, (13a)

where

f̃(zk(t), uk(t)) , f(zk(t) − vIte2, uk(t)) + vIe2. (13b)

We let the patrol duration T be a decision variable. Hence, we introduce the time transforma-

tion t = Ts to enable us to define the channel patrol problem on the fixed time interval [0, 1]. For

simplicity of notation, we use the same notation for states and controls defined on [0, T ] as on the

normalized time interval [0, 1]. The meaning should be clear from the context. We now obtain the

time-normalized kinematic equations

dzk(s)

ds
= T f̃(zk(s), uk(s)), zk(0) = ξk. (14)

We denote the solution of (14) by zk(·;T, uk, ξk), as it clearly depends on the control input

{uk(s), s ∈ [0, 1]}, the time horizon T , and the initial condition ξk. Since the relative location

ẑk(t) of the k-th patroller is given by the first two components of zk(·;T, uk, ξk) evaluated at

t/T , it also depends on {uk(s), s ∈ [0, 1]}, T , and ξk. Moreover, the probability P that no pa-

troller detects the intruder during the interval [0, T ] (see (11)) is a function of T and the relative

locations {ẑk(t), t ∈ [0, T ]}, k = 1, 2, ..., q. Consequently, P depends on T , {uk(s), s ∈ [0, 1]}
and ξk, k = 1, 2, ..., q, and to emphasize this dependence we write P (T, u, ξ) instead of P , where

u = (u1, u2, . . . , uq) and ξ = (ξ1, ξ2, . . . , ξq).

The optimal periodic patrol problem (OPPP) consists of maximizing the probability of detect-

ing the intruder during the time interval [0, T ], i.e., 1 − P (T, u, ξ), by choosing the best values of

8



T , u, and ξ. This leads to the following optimal control problem formulation:

OPPP : max{1 − P (T, u, ξ)} (15a)

s.t. zk(1;T, uk, ξk) = g(ξk), k = 1, 2, ..., q, (15b)

zk(s;T, uk, ξk) ≤ zmax
k (s;T ), k = 1, 2, ..., q, s ∈ [0, 1], (15c)

zk(s;T, uk, ξk) ≥ zmin
k (s;T ), k = 1, 2, ..., q, s ∈ [0, 1], (15d)

T ∈ [Tmin, Tmax], (15e)

u ∈ U, (15f)

ξ ∈ X, (15g)

where g : R
nx → R

nx is a function that describes the end-state constraints, zmax
k (s; ·) : R → R and

zmin
k (s; ·) : R → R are upper and lower bounds on the state trajectories at scaled time s, respectively,

Tmin and Tmax are the minimum and maximum durations of a patrol, respectively, U is the set of

admissible controls, and X ⊂ R
nx × · · ·×R

nx is the set of admissible initial conditions. We assume

that U is a convex subset of the q-dimensional Cartesian product Lnu

∞,2[0, 1]×· · ·×Lnu

∞,2[0, 1], where

Lnu

∞,2[0, 1] denotes the pre-Hilbert space whose elements are functions from [0, 1] to R
nu , which are

in Lnu

∞
[0, 1], i.e, are sup-norm bounded, with inner product 〈u1, u2〉2 ,

∫ 1
0 〈u1(t), u2(t)〉dt and norm

‖ · ‖2 defined by ‖u‖2 = 〈u, u〉1/2
2 .2

Specifically, we let

U , {u = (u1, u2, ..., uq) | uk ∈ Lnu

∞,2[0, 1], u
min
k ≤ uk(s) ≤ umax

k ,∀s ∈ [0, 1], k = 1, 2, ..., q} (16)

where umin
k and umax

k are the minimum and maximum control input at any point in time for the

k-th patroller.

We use the constraints (15b) to ensure that the patrollers’ trajectories are closed. The con-

straints (15c) and (15d) are set up to contain the trajectories of the patrollers to be within a time-

varying box. The constraint (15e) limits the duration of a patrol. The constraints (15f) and (15g)

ensure that the control input and initial conditions satisfy specific constraints. We note that the

dynamics (14) are implicitly accounted for through the definition of P (T, u, ξ) and zk(·;uk, T, ξk),

k = 1, 2, ..., q.

We replace the “running cost” exp(−
∫ T
0

∑q
k=1 rk(ẑk(t), y, t)dt) in (11) with an “end cost”

using an auxiliary information state p(y, s) to facilitate the evaluation of this integral by the same

2The reason for using this “hybrid” space is that our cost and constraint functions are differentiable on L
nu

∞,2
[0, 1],

but they are not necessarily differentiable on the well-know space L
nu

2
[0, 1] of Lebesgue square-integrable functions

with the same scalar product and norm; see Section 5.6 in [10].
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numerical integration technique used to solve the dynamic equations (14). For any y ∈ R
2, let

p(y, s) be the solution of the parameterized differential equation

dp(y, s)

ds
= −Tp(y, s)

q
∑

k=1

rk(ẑk(s), y, T s), p(y, 0) = 1. (17)

In view of (3), p(y, s) is the probability that no patroller has detected the intruder during the time

interval [0, T s] given the intruder is located at y. It generalizes the information state pk(y, t) to the

case of multiple patrollers, relative locations, and scaled time.

In this notation,

P (T, u, ξ) =

∫

y∈A
p(y, 1)φ(y)dy, (18)

where p(y, 1) is given by (17) and computed using T , u, and ξ, and A , [0, L] × [0, vI ]. Note

that similarly to the change from the time interval [0, T ] to the scaled time interval [0, 1], the area

A(T ) = [0, L] × [0, vIT ] is replaced by the scaled area A.

The numerical solution of OPPP requires the discretization of the time interval [0, 1] and of

the area A, as we describe in the next section.

4 Discretization

We consider the time and space discretizations in turn. First, we deal with the discretization of

the rectangular area A, using a N1 by N2 grid defined by

y1
i = i∆1 and y2

j = j∆2, (19)

where ∆1 = L/N1, ∆2 = vI/N2, i = 0, 1, . . . ,N1, and j = 0, 1, . . . ,N2. We also define center points

of the grid by

y(i,j)
c =





y1
i − ∆1/2

y2
j − ∆2/2



 , (20)

for i = 1, 2, . . . ,N1 and j = 1, 2, . . . ,N2.

Let pij(s) , p(y
(i,j)
c , s). Then, for the center points of this grid, (17) becomes

dpij(s)

ds
= −Tpij(s)

q
∑

k=1

rk(ẑk(s), y
(i,j)
c , T s), pij(0) = 1. (21)

Our approach works with any spatial discretization scheme. For example, if the given problem

is to find a patrolling trajectory inside a closed area with an arbitrary shape, one can use a triangular

mesh grid.

10



Second, we consider discretization of the dynamics in time. We follow the procedure described

in [10] and use Euler’s method with time step ∆ = 1/N , N a positive integer, to obtain the

discretized dynamics of (14) and (21):

zk((l + 1)∆) − zk(l∆) = ∆T f̃(zk(l∆), uk(l∆)), zk(0) = ξk, (22a)

for k = 1, 2, ..., q and

pij((l + 1)∆) − pij(l∆) = −∆Tpij(l∆)

q
∑

k=1

rk(ẑk(l∆), y(i,j)
c , T l∆), pij(0) = 1, (22b)

for i = 1, 2, . . . ,N1 and j = 1, 2, . . . ,N2, with l = 0, 1, . . . ,N − 1.

Third, we discretize the control input u(·). For any l = 0, 1, 2, ...,N − 1, we define

ūl = (ū′

l,1 ū′

l,2 . . . u′

l,q)
′, (23a)

where ūl,k ∈ R
Nu is the control input for the k-th patroller at scaled time l∆, k = 1, 2, ..., q. Also,

let

ū = (ū′

0, ū
′

1, ..., ū
′

N−1)
′, (23b)

and for any k = 1, 2, ..., q let

ū·,k = (ū′

0,k, ū
′

1,k, ..., ū
′

N−1,k)′. (23c)

To ensure norm-preservation between the infinite-dimensional input u(·) and the discretized input

ū, we scale ū with the time-discretization level and let uk(l∆) =
√

Nūl,k for all l = 0, 1, ...,N − 1

and k = 1, 2, ..., q; see pp. 722-723 in [10].

Finally, let z̄l,q be the k-th patroller’s approximate state at time step l when using both the

discretized dynamics (22a) and the discretized input (23b). That is, for any for k = 1, 2, ..., q and

for l = 0, 1, ...,N − 1, let

z̄l+1,k − z̄l,k = ∆T f̃(z̄l,k,
√

Nūl,k), z̄0,k = ξk. (24a)

Similarly, let p̄l,ij be the approximate probability that no patroller has detected the intruder up to

time step l, given that the intruder is located in the discretized area represented by y
(i,j)
c . Then we

see that p̄l,ij satisfies the difference equation,

p̄l+1,ij − p̄l,ij = −∆T p̄l,ij

q
∑

k=1

rk(ˆ̄zl,k, y
(i,j)
c , T l∆), pij(0) = 1, (24b)

for i = 1, 2, . . . ,N1 and j = 1, 2, . . . ,N2, with l = 0, 1, . . . ,N − 1. Here ˆ̄zl,k denotes the first two

components of z̄l,k.
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We emphasize that z̄l,k depends on T , ū·,k, and ξk by writing z̄l,k(T, ū·,k, ξk) instead of z̄l,k.

In view of (18), the approximation of P (T, u, ξ), denoted by PN,N1,N2
(T, ū, ξ), using the above

discretization scheme takes the form

PN,N1,N2
(T, ū, ξ) =

N1
∑

i=1

N2
∑

j=1

p̄N,ijφ(y(i,j)
c )∆1∆2. (25)

Hence, for any positive integers N , N1, and N2, the time-and-space discretization of OPPP

takes the form

OPPP(N,N1,N2) : max {1 − PN,N1,N2
(T, ū, ξ)} (26a)

s.t. z̄N,k(T, ū·,k, ξk) = g(ξk), k = 1, 2, ..., q, (26b)

z̄l,k(T, ū·,k, ξk) ≤ zmax
l,k (T ), k = 1, 2, ..., q, l = 0, 1, ...,N, (26c)

z̄l,k(T, ū·,k, ξk) ≥ zmin
l,k (T ), k = 1, 2, ..., q, l = 0, 1, ...,N, (26d)

T ∈ [Tmin, Tmax], (26e)

ūl,k ∈ [umin
k /

√
N,umax

k /
√

N ], k = 1, 2, ..., q, l = 0, 1, ...,N − 1, (26f)

ξ ∈ X, (26g)

where zmax
l,k (T ) = zmax

k (l∆;T ) and zmin
l,k (T ) = zmin

k (l∆;T ). The constraints (26b)-(26d) and (26f)

are discretized versions of the corresponding constraints in OPPP.

The problem OPPP(N,N1,N2) has a large number of decision variables, and the dimension

of the underlying augmented discrete dynamics (24a) and (24b) is also large. Specifically, the

dimension of the dynamics is nxq+N1N2, and the number of decision variables in OPPP(N,N1,N2)

is Nnuq + nxq + 1.

To solve OPPP(N,N1,N2), one can use collocation methods [2], which treat the control

and the state as independent variables. Although, in this case, the gradient computations become

relatively simple, the resulting nonlinear programming problem has a large number of variables and

a large number of nonlinear (collocation) equality constraints, representing the dynamics. Since the

dimension of the augmented discrete dynamics is, normally, quite large, using collocation methods

would result in serious numerical difficulties unless a solver specialized in dealing with a large

number of sparse collocation constraints is used. The pseudospectral method, also known as the

orthogonal collocation method [5] may reduce the size of N , and therefore the number of variables

and discretized constraints. However, it has only been validated for the solution of optimal control

problems with continuous optimal controls, but our patrolling problem results in discontinuous

optimal controls. Hence we prefer to use the method presented in Chapter 4 of [10], which regards
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only control inputs, initial conditions, and end time as decision variables. Numerical results based

on this approach are presented in the next section.

5 Numerical Results

In the following numerical examples, we assume that the k-th patroller’s absolute state xk(t) =

(x1
k(t) x2

k(t) x3
k)

′ ∈ R
3, i.e., nx = 3, where (x1

k(t), x
2
k(t)) represent the absolute location of the k-th

patroller, as before, and x3
k represents its heading. We assume that all patrollers move at constant

speed v. The control input for the k-th patroller uk ∈ R is its yaw rate, i.e., nu = 1. This leads to

kinematic equations in (12) defined by

f(xk(t), uk(t)) =











v cos x3
k(t)

v sin x3
k(t)

uk(t)











, (27)

k = 1, 2, ..., q. This planar kinematic model describes underwater vehicles that navigate at a

constant depth and a constant forward speed with variable yaw rate. In [6], a similar model was

suggested for use with underwater vehicles, but they regarded the vehicle’s yaw rate as a function

of vehicle’s forward speed and steering angle.

After transformation to the relative state form in (13a), we obtain that

f̃(zk(s), uk(s)) =











v cos z3
k(s)

v sin z3
k(s) + vI

uk(s)











. (28a)

In OPPP, for every patroller k = 1, 2, ..., q, we let end-state constraint

g(ξk) = (ξ1
k, ξ2

k + vI , ξ
3
k + 2nπ)′ (28b)

for some n = 0, 1, 2, .... This ensure that the absolute location and heading of the patroller at time

T is the same as at time 0. The integer n is a variable that determines the number of 360-degree

rotations that are required during a patrol and hence, as we will shortly see, it largely determines

the shape of the trajectory. Since we cannot deal with mixed integer programming, we will resolve

the problem for n = 0, 1, 2, .... In fact, it soon becomes apparent that one only needs to consider

the values n = 0, 1.

We set the state-trajectory constraints zmin
k (s;T ) = (0, vIsT − γ,−∞)′ and zmax

k (s;T ) =

(L, vIsT + γ,∞)′ for k = 1, 2, ..., q, where γ > 0 is a constant that we vary below. We note
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Case n γ Tmax T ∗ P ∗

1 0 L/10 25 24.001 0.43348

2 1 L/10 25 23.568 0.43300

3 2 L/10 25 25.000 0.43243

4 0 L/5 15 15.000 0.42462

5 1 L/5 15 15.000 0.42620

Table 1: Summary of numerical results for a single patroller and varying number of rotations n (see

(28b)), vertical range γ, and patrol-duration limit Tmax. T ∗ and P ∗ are optimized patrol duration

and probability of detection, respectively.

the state-trajectory constraints imply that z1
k(s) ∈ [0, L], i.e., the patrollers stay within the chan-

nel and z2
k(s) ∈ [−γ + vIsT, γ + vIsT ], i.e., x2

k(t) ∈ [−γ, γ]. Hence, the last constraint limits

how much the patrollers can travel up and down the channel. The control input limits umax
k = 1

and umin
k = −1 for k = 1, 2, ..., q. We let the constraint set on the initial conditions be given by

X = {ξ ∈ R
3 | 0 ≤ ξ1 ≤ L, ξ2 = 0, ξ3 ∈ R}.

We set the channel width L = 20, where one unit of length equals 1000 yards, and the intruder

speed vI = 3, and the patroller speed v = 1. We assume that one unit of time equals 0.1 hours.

Hence, the intruder and patrollers move at approximately 15 knots and 5 knots, respectively. We

always use Tmin = 5 and hence we do not consider patrols of shorter duration that 0.5 hours. We

vary Tmax. We use the detection rate function (1) with parameters as given below that equation.

Hence, the detection rate function is as in Figure 2. If not stated otherwise, we assume that the

distribution of the intruder’s y1-location is uniform, i.e., φ1(y1) = 1/L. We set the discretization

levels with N = 128 and N1 = N1 = 32. For the above parameter values, the augmented discrete

dynamics are of dimension 1027, 1030, and 1033 for one, two, and three patrollers, respectively. The

number of decision variables is 132, 263, and 394 for one, two, and three patrollers, respectively.

Finally, we use SNOPT version 6.2 [8] in TOMLAB MATLAB toolbox [4] as our nonlinear

programming solver, running on a desktop computer with two AMD Opertron 2.2GHz processors

with 8GB RAM, running Linux 2.6.28. We use SNOPT default parameters.

Next we describe the results of several numerical studies involving one, two, and three pa-

trollers.
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5.1 One Patroller

Table 1 provides numerical results for a single patroller, i.e., q = 1, for several values of the number

of rotations n (see (28b)), vertical trajectory constraint γ, and maximum patrol duration Tmax.

In cases 1-3, γ = L/10 = 2, i.e., the patroller cannot move vertically (in Figure 1) more than two

units above or below its starting point. Moreover, in cases 1-3, the patrol duration is limited to

Tmax = 25. Case 1 requires the patroller to return to the same heading at the end of the patrol

(i.e., no rotation is allowed and n = 0 in (28b)) forcing the optimized trajectory to have a “bow-tie”

shape, as displayed in Figure 3 (solid line). Since OPPP(N,N1,N2) may be nonconvex, we cannot

guarantee that the control input that generates this trajectory or those reported below are globally

optimal. However, the optimized control inputs and corresponding trajectories satisfy the default

stopping criterion of SNOPT and hence are close to a stationary solution of OPPP(N,N1,N2).

Figure 3 also displays the initial trajectory prior to optimization (dotted line). The arrows in Figure

3 as well as all other figures indicate the direction of travel for the patroller. Large white and black

triangles denote initial positions and headings before and after optimization, respectively. Since the

patroller’s sensor range is roughly 5 units (see Figure 2), the optimized trajectory is stretched out so

that the sensor effectively reaches both sides of the channel. The initial trajectory has probability of

detection 0.42145 and length of patrol 15, while the corresponding optimized numbers are 0.43348

and 24.001 as listed under T ∗ and P ∗ in Table 1.

Case 2 in Table 1 is identical to Case 1 but requires a 360-degree heading change at the

end of one patrolling period (i.e., n = 1). Hence, the patroller must return to a heading shifted

360 degrees from the initial heading, which excludes a “bow-tie” type trajectory, but is compatible

with a “racetrack” type trajectory. Figure 4 shows the corresponding initial trajectory (dotted line,

probability of detection is 0.42587) and optimized trajectory (solid line, probability of detection is

0.43300). We note that the optimized probability of detection is slightly worse for n = 1 than for

n = 0, 0.43348 versus 0.43300.

Case 3 in Table 1 is identical to Case 1 but requires two rotations (i.e., n = 2), which rules out

both “bow-tie” and “racetrack” type trajectories. In this case, the initial heading must be shifted

by 720 degrees and hence the patroller makes two loops as shown in Figure 5. The probability of

detection is again slightly worse than for n = 0 and n = 1. Since the probability of detection seems

to decrease as the number of rotations increases, we will restrict ourselves to the problems with

n = 0 and 1.

In the Cases 1-3, the patrol-duration limit Tmax was not active. In Cases 4 and 5 this limit
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Figure 3: Case 1: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with no rotation (n = 0 in (28b)). The arrows indicate direction of travel for the patroller.

The white triangle denotes initial position and heading before the optimization, and the black

triangle denotes the one after optimization.
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Figure 4: Case 2: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with 360-degree rotation (n = 1 in (28b)).
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Figure 5: Case 3: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with 720-degree rotation (n = 2 in (28b)).

is reduced to 15 and also the vertical movement restriction γ is relaxed to L/5 = 4. We see from

Table 1 that these changes impose a restriction on the patroller and the probability of detection

worsens. Figures 6 and 7 show the resulting trajectories. We see that the worsened probability of

detection is caused by the fact that the shorter patrol duration prevents the patroller from reaching

the sides of the channel.

We also consider a situation (Case 6) where the distribution of the intruder’s y1-location is not

uniform. Suppose that φ1(y1) = 2y1/L. Hence, we assume that the intruder is more likely to travel

down the channel near the right side than the left side in Figure 1. Figure 8 shows the optimized

trajectory for this case with no rotation required (n = 0), γ = L/10, and Tmax = 25. We see that

in this case the patroller prefers a “double figure eight” trajectory close to the right side of the

channel. The optimized trajectory has duration 25.000 and significantly improves the probability

of detection to 0.61374 from the initial probability of detection of 0.42449.

We return to the situation with a uniform intruder distribution and consider the effect of

variable intruder speed. Table 2 presents Cases 7-12 involving different intruder speeds and numbers

of rotation. We assume that detection rate is as above, even though a slower intruder may be

quieter and therefore harder to detect under certain circumstance. In all of these cases γ = L/10

and Tmax = 25. Rows two and three of Table 2 restate the results for Cases 1 and 2 from Table 1, in

which the intruder speed vI = 3, for ease of comparison. Rows four and five give results for vI = 2.

Naturally, as the intruder speed reduces, the probability of detection increases, while the shapes of
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Figure 6: Case 4: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with no rotation (n = 0 in (28b)) and patrol duration restriction.
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Figure 7: Case 5: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with 360-degree rotation (n = 1 in (28b)) and patrol duration restriction.
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Figure 8: Case 6: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single

patroller with no rotation (n = 0 in (28b)) and right-leaning triangular intruder-location distribu-

tion.

trajectories remain qualitatively similar (Figure 9). This effect is further observed for the Cases 9

and 10 (vI = 1) and for Cases 11 and 12 (vI = 0.5). We note that in all cases the constraint of

no rotation (n = 0) results in better probability of detection than the requirement of a 360-degree

rotation (n = 1). These results are qualitatively different from the “idealized” results obtained in

[12], Chapter 9, which do not account for turn radius constraints of the patroller. There we see that

a “back-and-forth” trajectory similar to the one in Figure 4 (n = 1), but with infinitely sharper

turns, is better than a “bow-tie” trajectory similar to that in Figure 3 (n = 0) whenever v/vI is

less than 1.8. Since Cases 1, 2, 7-10 involve smaller v/vI ratios, the “idealized” results would lead

to the conclusion that a “back-and-forth” trajectory would be best. However, our numerical results

show that the bow-tie trajectory (n = 0) is better when the patroller is constrained by its turn

radius.

5.2 Two Patrollers

Next we consider two patrollers, i.e., q = 2, and four additional cases as summarized in Table

3. In all of these cases the patrol-duration limit Tmax = 25. Rows two and three of Table 3

give the optimized patrol duration and probability of detection for no rotation (n = 0) and 360-

degree rotation (n = 1), respectively, using γ = L/10. Figures 10 and 11 give the corresponding

trajectories. We see again that no rotation (Case 13) results in better probability of detection.
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Figure 9: Zoomed-in solution trajectories with varying vI and n = 0 (see (28b)). For ease of

comparison, the trajectories are slightly translated so that the crossing points of the trajectories

are at the origin.

Case vI n T ∗ P ∗

1
3

0 24.001 0.43348

2 1 23.568 0.43300

7
2

0 23.578 0.49725

8 1 23.178 0.49514

9
1

0 24.177 0.65767

10 1 24.434 0.64077

11
0.5

0 25.000 0.88680

12 1 25.000 0.86413

Table 2: Summary of numerical results for a single patroller, varying intruder speed vI , and number

of rotations n (see (28b)), with γ = L/10 and Tmax = 25. T ∗ and P ∗ are optimized values of patrol

duration and probability of detection, respectively.
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Figure 10 shows that the optimized trajectories are similar to “figure eights,” even though the

initial trajectories are similar to the infinity symbol. This effect is caused by the narrowness of

the channel. The two patrollers obtain better probability of detection and less overlap in their

“coverage” by moving along the channel instead of across. The probability of detection for the

initial trajectory is 0.78003 and improves to 0.82037 after optimization.

We observe that the trajectories in Figure 10 are different for the two patrollers, which may

be counterintuitive as the distribution of the intruder’s y1-location is uniform. Additional calcula-

tions show that the trajectories in Figure 10 yield a larger probability of detection (0.82037) than

patrol plans consisting of identical but translated trajectories for both patrollers. If the right-most

patroller mimics the left-most patroller in Figure 10, but on the right side of the channel, then the

probability of detection deteriorates to 0.81630. If the left-most patroller mimics the right-most

patroller, then the probability of detection deteriorates to 0.81472. The probabilities deteriorate

further when the patrollers carry out identical but mirror-imaged trajectories. These results provide

new insight that is not easily obtained using the idealized calculations of [12], Chapter 9.

The optimized trajectories of Case 14 with the constraint of one rotation (i.e., n = 1) (see

Figure 11) yield a probability of detection of 0.79340, which is worse than in Case 13 (i.e., n = 0).

We also examined the configuration with one patroller constrained to no rotation (n = 0) and

the other one to a 360-degree rotation (n = 1). However, the resulting probability of detection

(0.81234) is worse than in Case 13.

Cases 15 and 16 in Table 3 show results similar to those for Cases 13 and 14, but for γ = L/5.

With this relaxation of the vertical movement constraint for the patrollers, we obtain slightly better

probability of detection. The relaxation allows for more complicated patrol trajectories as shown in

Figures 12 and 13. We see that the patrollers stagger vertically their trajectories to avoid overlap

and therefore increase the probability of detection. While not easily seen from Figures 12 and 13,

the patrollers also synchronize their progress along their trajectories so that when one patroller

moves to the left, say, then the other tends to move to the left also to fill the gap between the

patrollers. Figure 14 illustrates this effect by showing the relative locations of the patrollers during

t ∈ [0, T ] for Case 16. Such insight about the coordination between multiple patrollers cannot be

reached through single-patroller analysis. The initial trajectories in Case 16 result in a probability

of detection of 0.77806, which is improved to 0.81594 after optimization.
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Case n γ T ∗ P ∗

13 0 L/10 25.000 0.82037

14 1 L/10 11.633 0.79340

15 0 L/5 25.000 0.82354

16 1 L/5 25.000 0.81594

Table 3: Summary of numerical results for two patrollers, varying number of rotations n (see (28b)),

and vertical range γ. T ∗ and P ∗ are the optimized patrol duration and probability of detection,

respectively. For all cases in the table the patrol-duration limit Tmax = 25.
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Figure 10: Case 13: Initial trajectories (dotted line) and optimized trajectories (solid line) of two

patrollers with no rotation (n = 0 in (28b)).
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Figure 11: Case 14: Initial trajectories (dotted line) and optimized trajectories (solid line) of two

patrollers with 360-degree rotation (n = 1 in (28b)).
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Figure 12: Case 15: Initial trajectories (dotted line) and optimized trajectories (solid line) of two

patrollers with no rotation (n = 0 in (28b)) and relaxed vertical trajectory constraint.
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Figure 13: Case 16: Initial trajectories (dotted line) and optimized trajectories (solid line) of two

patrollers with 360-degree rotation (n = 1 in (28b)) and relaxed vertical trajectory constraint.
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Figure 14: Case 16: Relative locations ẑ1(t) = (z1
1(t), z2

1(t)) and ẑ2(t) = (z1
2(t), z2

2(t)) for two

patrollers with absolute location given in Figure 13.
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Figure 15: Case 17: Initial trajectories (dotted line) and optimized trajectories (solid line) of three

patrollers with no rotation (n = 0 in (28b)) constraint.

5.3 Three Patrollers

Finally, we consider three patrollers briefly, for the single case of Tmax = 25, γ = L/10, and no

rotation constraint (n = 0). The optimized probability of detection is 0.94086, improved from

0.90335 for the initial trajectories, and the optimized patrol duration is T ∗ = 25.000. Figure 15

displays the initial and resulting trajectories. We see that the shape of each trajectory is quite

similar to the ones in Case 13 for two patrollers; see Figure 10. We note that for two and three

patrollers the optimized trajectories tend to become quite intricate, especially when the patrollers

are tightly constrained vertically with γ = L/10 and no rotation is required (n = 0). This effect is

caused by the fact that multiple patrollers make it suboptimal for each patroller to search across

the whole channel. This would have caused substantial overlap between the patrollers and a lower

probability of detection. Hence, each patroller is effectively confined to a smaller area of operations.

Even in the smaller area, the patrollers tend to prefer longer patrol durations and the constraint

T ≤ Tmax is often active. Longer patrol durations are usually preferable as the constraint that

the patroller’s relative final state must match its relative initial state (possibly with a rotational

shift) imposes a restriction on the patroller and the longer duration allows more “free” movement

between those “boundary conditions.”
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6 Conclusions

We formulated the channel patrol problem for multiple patrollers subject to turn-rate constraints

as an optimal control problem. In this problem, the patrollers aim to maximize the probability

of detecting an intruder that travels straight down a channel with constant speed. Using dis-

cretization of time and space, we obtained a large-scale nonlinear programming approximation of

that problem which we solved to obtain an approximately stationary solution and a corresponding

optimized trajectory for each patroller. In numerical tests specifically tailored to one, two, and

three underwater patrollers, an underwater intruder, different trajectory constraints, and several

intruder speeds, we found that simple “back-and-forth” trajectories across the channel are inferior

to more complicated, optimized trajectories. For a single patroller, the optimized trajectories tend

to have the shape of a bow tie for a variable range of intruder speeds. The optimized trajectory

changes shape to a “double figure eight” when the intruder is known to bias its route to one side

of the channel. For two patrollers, the optimized trajectories also take the shape of “double figure

eights,” which may be staggered when the trajectory constraints allow sufficient movement along

the channel. For three patrollers, the optimized trajectories again resemble “double figure eights.”

The optimized probability of detecting an intruder at 15 knots in a channel of width 20,000 yards

using three patrollers at 5 knots with an imperfect sensor of range approximately 5,000 yards is

0.94. That probability is reduced to 0.82 and 0.43 for two and one patrollers, respectively.

The results of this study provide new insight, not easily obtained using geometric calculations,

into efficient patrol trajectory design for multiple patrollers in a narrow channel where interaction

between the patrollers is unavoidable due to their limited turn rate. The insight comes at a sub-

stantial computational cost as the large-scale nonlinear programming approximations may require

many days to solve using standard hardware and software due to expensive function and gradient

evaluations as well as poor conditioning. We believe it is possible to obtain significant reductions

in computing times, but defer such efforts to future studies.
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